8^-x-1=(1/64)^x

Simple and best practice solution for 8^-x-1=(1/64)^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^-x-1=(1/64)^x equation:



8^-x-1=(1/64)^x
We move all terms to the left:
8^-x-1-((1/64)^x)=0
Domain of the equation: 64)^x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-x-((+1/64)^x)-1+8^=0
We add all the numbers together, and all the variables
-1x-((+1/64)^x)=0
We multiply all the terms by the denominator
-1x*64)^x)-((+1=0
Wy multiply elements
-64x^2+1=0
a = -64; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-64)·1
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*-64}=\frac{-16}{-128} =1/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*-64}=\frac{16}{-128} =-1/8 $

See similar equations:

| 8^-b-1=(1/64)^b | | 3^-2x=3^-2x-1 | | -7/4=t2/5 | | 12x+3=0×+21 | | (w+3)/10=7/8 | | 5/f​ =−8 | | 3j-18=45 | | 12(x+2)=-4x+2 | | X+x+x-12=180 | | y=2(1+0.024)^1 | | 15w^2+56+49=0 | | -13=11x-9 | | -13=11x-9/10 | | -1=3/1v | | 3x+5x+30=12 | | 8(h+2)=88 | | 8x(x-3)+15=55 | | Y=3x2-12x+10 | | y(5)−y(4)+3y(3)+5y00=0. | | 5.64/x=2.72/3.25 | | 2/5(x+3)^2+8=-32 | | 3•6x=18 | | 16+2x=46 | | 40-x=-12-24x+6 | | 14x−10=4 | | 6(4-8x)=-8(-6+5x) | | 4x-1=3x=2 | | 2(y-6)=15 | | 48=8^2x/2 | | 0.01n+0.05=67 | | 48=8x2x/2 | | 18/20=36/x |

Equations solver categories